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The long-time t-f behaviour of the angular-velocity autocorrelation function is 
determined by the diffusion of fluid motion to large distances, from where the particle 
appears a point singularity. From an examination of this flow, the coefficient of tf 
can be related to some effective aspect ratios which describe how the particle rotates 
in a simple shear flow. 

1. Introduction 
The autocorrelation function of the velocity of a spherical particle in Brownian 

motion has a t-1 asymptotic decay at long times in translational motion (Alder & 
Wainwright 1970), and a t-f asymptotic decay in rotational motion (Ailawadi & Berne 
1971). The translational result for a sphere is precisely true for a particle of arbitrary 
shape, whereas the coefficient oft-& in the rotational result depends on the shape of 
the particle. This coefficient has been calculated for ellipsoids of revolution by 
Hocquart (1977), who obtained the Laplace transform of the entire angular-velocity 
autocorrelation function by solving the time-dependent linearized equations f6r the 
fluid motion in spheroidal coordinates. 

In this paper we shall find the coefficient of t-8 in the long-time asymptotic form 
of the angular-velocity autocorrelation function for a particle of general shape, 
restricted only so that it has a mirror symmetry about three mutually orthogonal 
planes, i.e. a so-called centrally symmetric particle. This restriction is necessary to 
avoid a coupling between translation and rotation, because the rotational t-& term 
found here would be changed by a small t-l correction in the translational t-1 term, 
a correction which we have been unable to calculate. 

We shall determine the angular velocity autocorrelation function in $4 as the decay 
of the angular velocity after an impulsively applied couple of magnitude kT (see e.g. 
Hinch 1975). The long-time asymptotic behaviour is governed by the diffusion of fluid 
motion to large distances, at which the particle appears at leading order as a force 
dipole. We derive this motion in $3, having previously introduced some useful 
properties of the steady motion of the particle in $2. 
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2. A grand resistance matrix and the effect aspect ratios 
We consider centrally symmetric particles, i.e. those with a mirror symmetry about 

three mutually orthogonal planes, because such particles have no coupling between 
their translational and rotational motion in slow viscous flows (low Reynolds 
number). Thus we can ignore the translation and just consider the particle rotating 
steadily with angular velocity w in a steady linear shear flow : 

Jz A x+ E - x ,  

where we have split the shear into a rotational part Jz and a pure straining motion 
E = Er. This viscous flow relative to the spinning particle will exert a steady couple 
G and a steady symmetric force dipole S on the particle given by 

$ E , ~ ,  G, + S,, = xi crjk nk dA. i 
By the linearity of Stokes flow, G and S are linearly related to Jz-w and E, i.e. 

where the tensors A,  B and C depend on the size, shape and orientation of the particle, 
and are known for some particular particles such as ellipsoids and long slender 
particles. Using a reciprocal theorem it is possible to show that the grand resistance 
matrix is symmetric (Hinch 1972). 

The restriction above to steady motion is really a restriction to changes taking 
place over times long compared with the time vorticity takes to diffuse the length 
1 of the particle, i.e. 12/v.  For more rapid changes in time it is possible to make a 
frequency-dependent generalization of the grand resistance relation ( 1 ) .  

In 5 4 we shall find that it is not necessary to know the tensors A ,  B and C in full 
detail, because the final answer only depends on the combination 

D = A-l*B.  

Now Bretherton (1962) has shown that this third-order tensor for a centrally 
symmetric particle has only three independent components with respect to axes that 
coincide with the symmetry planes of the particle. These independent components 
are 

The remaining components are zero. The non-zero components are often expressed 
in terms of three effective aspect ratios r12, rZ3 and r31 by 

D312 = D3213 D123 = D132, D231 = D213* 

1 rf,- 1 D,,, = -- 
2 rf, + 1 ' 

For an ellipsoid r12 = al/a2, where at are the semimajor axes. Note for a general 
particle it is not necessary for the product r12r23r31 to be equal to unity, as in the 
case for an ellipsoid. 

The effective aspect ratios of a centrally symmetric particle can be measured 
experimentally from the period of rotation of a particle of the same shape placed in 
a simple shear flow (see e.g. Harris, Nawaz & Pittman 1979). In the simple shear 
u = (yxz ,  0,O) the particle will rotate about its 3-axis with a period 2n (rF2 + l)/yr12. 



The angular-velocity correlation function for a Broumian particle 219 

3. Flow due to point singularities 

by 
We first calculate the flow due to an impulsive point force, i.e. the flow governed 

V'U = 0, 

au 
p t =  -Vp+  pV2u+F6(x) 8( t ) .  

Fourier-transforming in space, we have, in t 2 0, 

Later we shall need the behaviour a t  x small compared with the diffusion distance 
(vt);, which comes from k small O((vt)i). Expanding exp(ik*x) for small k-x, we 
obtain 

From this fundamental solution we can calculate the response to an impulsive point 
dipole (?jEijkGk+&ij) applied to the fluid, i.e. the flow governed by 

V'U = 0, 

We find, in t 2 0, 

4. Long-time behaviour after an impulsively applied couple 
Now when a couple G is impulsively applied to a centrally symmetric particle i t  

will rotate in a complicated time-dependent way. I n  order to  remain rigid and not 
deform, it will exert stresses on the fluid which have a symmetric force dipole, as well 
as force octopoles and higher multipoles. (The central symmetry of the particle rules 
out any coupling to the force pole, quadrupole and higher even multipoles.) 

At large times the fluid motion is dominated by the force dipole, with small 
corrections from the force octopole and higher multipoles. The overall force dipole 
which enters the long-time behaviour is the integral over time of the instantaneous 
value. The antisymmetric part of the overall force dipole is just the given impulsive 
couple G. The symmetric part of the overall force dipole is given by solving the 
zero-frequency grand resistance problem ( 1 )  with no flow given a t  infinity 
(a = 0 = E ) ,  i.e. 

Thus a t  large times the particle sees the flow (3) with S given by (4). This is a 
quasi-steady shearing flow with 

S = BT*A-'* G. (4) 

G, E =  s. ( 5 )  
1 a =  

p(47cvt)f lOvt p(47cvt)f lOvt 

8 F L Y  137 
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The free response of the particle to the flow (3) is a quasi-steady rotation w given 
by solving another zero-frequency grand resistance problem (l) ,  this time with G = 0 
corresponding to no couple being applied after the initial impulse, i.e. 

= B+A-'*B:E. 

Substituting ( 4 )  and ( 5 ) ,  we have 

w -  [+G+&A-l.B :BT*A-l*G]. 
p(4.rcvt)$ vt 

Finally we recall that  the angular-velocity autocorrelation function for Brownian 
motion is the decay of the angular velocity after an impulsively applied couple of 
magnitude kT. Thus combining result (6) with the representation (2), we have in the 
principle axes of the centrally symmetric particle at long times 

with similar results for i = j = 2 and 3, and zero for i =k j. This long-time asymptotic 
decay agrees with that of Hocquart (1977) in the case of ellipsoids which have 
r23 = a 2 / a 3 '  
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